The response of maize to lime and the viability of maize intercropped with sunnhemp

Introduction

The purpose is to find

- the response of maize to lime under conservation farming basins in region IIa agroecological zone.
- 2) if maize intercropped with red sunnhemp and rotated *in situ* is viable as a sole-cropped maize in conservation farming basins in region IIa.

Data

The average yield from the 195 treatments is 2,916kg ha⁻¹ with a standard deviation of 1,306kg. The median is 2,970kg ha⁻¹, suggesting a normal distribution. The minimum yield was 506kg and the maximum 5,878kg.

		Duna	avant maiz	e sunnhe	mp trial	
	n	Mean	Median	StDev	Minimum	Maximum
Yield	195	2,916kg	2,970kg	1,306kg	506kg	5,878kg

Table 1 shows the results of a one-way analysis of the yields of each of the treatments. There are four treatments, 1) with no lime and no sunnhemp, 2) with no lime and sunnhemp, 3) with lime and no sunnhemp and 4) with lime and sunnhemp. The yield of the treatment without lime and without sunnhemp is 3,405kg ha⁻¹ with a standard deviation of 1,165kg; the yield with sunnhemp but without lime is 2,298kg ha⁻¹ with a standard deviation of 1,203kg; with lime but without sunnhemp, 3,512kg ha⁻¹ with a standard deviation of 1,164kg; and with lime and sunnhemp 2,462kg ha⁻¹ with a standard deviation of 1,252kg. There is a significant difference between the yield treatments.

Table 1 shows the results of a one-way analysis of the yields of each of the treatments.

ANALYSIS	OF V	ARIANCE ON	Yield		
SOURCE	DF	SS	MS	F	р
C104	3	57557308	19185770	13.40	0.000
ERROR	191	273562176	1432263		
TOTAL	194	331119488			
				INDIVIDUAL	95% CI'S FOR MEAN
				BASED ON P	POOLED STDEV
LEVEL	Ν	MEAN	STDEV	+-	++
1	49	3405	1165		()
2	49	2298	1203	(*)
3	48	3512	1164		()
4	49	2462	1252	(*)
				+-	+++
POOLED ST	FDEV :	= 1197		2400	3000 3600

Table 2 shows the maize yields with and without lime. The maize yield without lime is 2,952kg ha⁻¹ with a standard deviation of 1,303kg and with lime, 2,981kg ha⁻¹ with a standard deviation of 1,314kg. There is no significant difference between the yields.

ANALYSIS	OF V	ARIANCE ON	Yield						
SOURCE	DF	SS	MS		F	р			
Lime	1	820509	820509	0.4	8	0.490			
ERROR	193	330298976	1711394						
TOTAL	194	331119488							
				INDIVI	DUAL	95% CI'	S FOR	MEAN	
				BASED	ON PO	OLED ST	DEV		
LEVEL	N	MEAN	STDEV	-+		+	+		+
-1	98	2852	1303	(*)	
1	97	2981	1314		(*)
				-+		+	+		+
POOLED S	TDEV =	= 1308	2	600	280	0	3000	3200)

Table 2 shows the maize yields with and without lime.

Table 3 shows the maize yields with and without sunnhemp. The yield without sunnhemp is 3,458kg ha⁻¹ with a standard deviation of 1,160kg, and with sunnhemp, 2,380kg ha⁻¹ with a standard deviation of 1,224kg. The difference between the yields is highly significant.

Table 3 sbows the maize yields with and without sunnhemp.

ANALYSIS	OF VA	ARIANCE OI	N Yield				
SOURCE	DF	S	S MS	F	р		
Sunnhemp	1	5662496	3 56624968	39.81	0.000		
ERROR	193	27449452	3 1422251				
TOTAL	194	33111948	3				
				INDIVIDUAL	95% CI'S	FOR MEAN	
				BASED ON F	OOLED STDE	V	
LEVEL	Ν	MEAI	I STDEV	+-	+-	+	
-1	97	345	3 1160			(*)
1	98	238) 1224	(*	·)		
				+-	+-	+	
POOLED S	TDEV =	= 1193	3	2500	3000	3500	

Table 4 shows the maize yields for each of the regions. The average yield in Western region is 3,155kg ha⁻¹ with a standard deviation of 1,146kg; Southern region has an average yield, 2,947kg ha⁻¹ with a standard deviation of 1,481kg; and Central region has the lowest mean yield, 2,451kg ha⁻¹ with a standard deviation of K1,216kg. The null hypothesis that the means from the regions are from the same population fails to be accepted.

Table 4 shows	the	maize	vields	for	each	of	the	region	15
			•/						

ANALYSIS	OF V	ARIANCE ON	Yield			
SOURCE	DF	SS	MS	F	р	
Region	2	14968590	7484295	4.55	0.012	
ERROR	192	316150912	1646619			
TOTAL	194	331119488				
				INDIVIDUAL	95% CI'S F	'OR MEAN
				BASED ON P	OOLED STDEV	,
LEVEL	N	MEAN	STDEV	+-	+	
0	83	3155	1146		()
1	65	2947	1481		(-*)
2	47	2451	1216	(*)	
				+-	+	
POOLED S	TDEV =	= 1283		2400	2800	3200

Table 5 shows the distributions of the maize yields for different trial ages. The 55 treatments from the newest farmers had an average yield of 2,907kg ha⁻¹ with a standard deviation of 1,436kg, the 136 treatments from first-year farmers had yields of 2,935kg ha⁻¹ with a standard deviation of 1,270kg. The average yield from the four treatments of the one second-year farmer was 2,386kg ha⁻¹ with a standard deviation of 512kg. There is no significant difference between the mean yields.

Ta	ble	e 5	shows	the	distri	butions	of	the	maize	yields	for	differen	t trial	ages.
----	-----	-----	-------	-----	--------	---------	----	-----	-------	--------	-----	----------	---------	-------

ANALYSIS	S OF VA	ARIANCE ON	Yield				
SOURCE	DF	SS	MS	F	р		
C120	2	1180336	590168	0.34	0.710		
ERROR	192	329939168	1718433				
TOTAL	194	331119488					
				INDIVIDUAL	95% CI'S	FOR MEAN	
				BASED ON P	OOLED STD	EV	
LEVEL	Ν	MEAN	STDEV	+	+	+	+-
0	55	2907	1436			(*)
1	136	2935	1270			(*	-)
2	4	2386	512	(*)
					+	+	+-
POOLED S	STDEV =	= 1311		1400	2100	2800	3500

Results

Table 6 shows the results of a general linear model. Outliers with studentised residuals beyond two standard deviations are omitted and the trial age was removed after showing no significance. The site mean is highly significant, as expected. Lime is significant at a five per cent level, with adjusted mean yields of 2,812kg ha⁻¹ without lime and 2,957kg ha⁻¹ with lime, suggesting a 5.2 per cent increase in yield. Sunnhemp is also significant, suggesting that the adjusted mean yield of the intercropped maize and sunnhemp of 2,387kg ha⁻¹ is 29.4 per cent lower than the sole-cropped 3,381kg ha⁻¹, and there is no significant influence from the number of years farmers have been practicing the method. We can therefore conclude that the lower yield found when sunnhemp is intercropped with maize is significantly lower than sole-cropped maize on a per hectare basis; but on a per plant or planting station basis, the intercropped maize yield is 41.2 per cent higher than sole-cropped maize.

Table 6 shows the results of a general linear model.

F-test with denom: Denominator MS =	inatoı 25132	r: Error 29 with 1	79 degree	es of freedom
Numerator	DF	Seq MS	F	Р
Sitemean	1	2.00E+08	797.21	0.000
Lime	1	979831	3.90	0.050
Sunnhemp	1	45716452	181.90	0.000
Lime*Sunnhemp	1	28704	0.11	0.736
Lime*Sitemean	1	303738	1.21	0.273
Sunnhemp*Sitemean	1	105667	0.42	0.518

Figure 1 shows the yields of maize with and without lime, the green line is without lime and the red line, with lime. The black line is the yield after deducting the cost of the lime in terms of yield. Although significant, the margins are thin, maize with lime becomes viable at yields of 2,000 kg ha⁻¹ and more. The divergence is not important to yields.

Figure 2 shows the yields without sunnhemp (green) and with sunnhemp (red). The black line shows the benefit from the reduction in initial costs from using sunnhemp. The cost saving per hectare from planting sunnhemp is K155,000 per hectare. This saving in terms of kilograms per hectare is 258 kilograms at K600 per kilogram, which is added back but is not sufficient to cover the lost sole-cropped maize yield.

Figure 1 shows the yields of maize with and without lime, the green line is without lime and the red line, with lime. The black line is the yield after deducting the cost of the lime in terms of yield.

Conclusions

- Lime makes an important contribution to maize, increasing yields by 5.2 per cent. Although this yield increment only recovers the cost of lime over 2,000kg ha⁻¹, conservation farmers normally exceed this yield under conservation farming basins in the region IIa agro-ecological zone.
- 2) Maize intercropped with sunnhemp and rotated in situ yields 29.4 per cent less than solecropped maize on a per hectare basis, but 41.2 per cent more on a per plant or planting station basis, in conservation farming basins in the region IIa agro-ecological zone.